37 research outputs found

    Pulse Morphology of the Galactic Center Magnetar PSR J1745-2900

    Get PDF
    We present results from observations of the Galactic Center magnetar, PSR J1745-2900, at 2.3 and 8.4 GHz with the NASA Deep Space Network 70 m antenna, DSS-43. We study the magnetar's radio profile shape, flux density, radio spectrum, and single pulse behavior over a ~1 year period between MJDs 57233 and 57621. In particular, the magnetar exhibits a significantly negative average spectral index of α\langle\alpha\rangle = -1.86 ±\pm 0.02 when the 8.4 GHz profile is single-peaked, which flattens considerably when the profile is double-peaked. We have carried out an analysis of single pulses at 8.4 GHz on MJD 57479 and find that giant pulses and pulses with multiple emission components are emitted during a significant number of rotations. The resulting single pulse flux density distribution is incompatible with a log-normal distribution. The typical pulse width of the components is ~1.8 ms, and the prevailing delay time between successive components is ~7.7 ms. Many of the single pulse emission components show significant frequency structure over bandwidths of ~100 MHz, which we believe is the first observation of such behavior from a radio magnetar. We report a characteristic single pulse broadening timescale of τd\langle\tau_{d}\rangle = 6.9 ±\pm 0.2 ms at 8.4 GHz. We find that the pulse broadening is highly variable between emission components and cannot be explained by a thin scattering screen at distances \gtrsim 1 kpc. We discuss possible intrinsic and extrinsic mechanisms for the magnetar's emission and compare our results to other magnetars, high magnetic field pulsars, and fast radio bursts.Comment: 18 pages, 12 figures, Accepted for publication in ApJ on 2018 August 30. v2: Updated to match published versio

    A Dual-band Radio Observation of FRB 121102 with the Deep Space Network and the Detection of Multiple Bursts

    Get PDF
    The spectra of repeating fast radio bursts (FRBs) are complex and time-variable, sometimes peaking within the observing band and showing a fractional emission bandwidth of about 10%–30%. These spectral features may provide insight into the emission mechanism of repeating FRBs, or they could possibly be explained by extrinsic propagation effects in the local environment. Broadband observations can better quantify this behavior and help to distinguish between intrinsic and extrinsic effects. We present results from a simultaneous 2.25 and 8.36 GHz observation of the repeating FRB 121102 using the 70 m Deep Space Network radio telescope, DSS-43. During the 5.7 hr continuous observing session, we detected six bursts from FRB 121102, which were visible in the 2.25 GHz frequency band. However, none of these bursts were detected in the 8.36 GHz band, despite the larger bandwidth and greater sensitivity in the higher-frequency band. This effect is not explainable by Galactic scintillation and, along with previous multi-band experiments, clearly demonstrates that apparent burst activity depends strongly on the radio frequency band that is being observed

    A Dual-band Radio Observation of FRB 121102 with the Deep Space Network and the Detection of Multiple Bursts

    Get PDF
    The spectra of repeating fast radio bursts (FRBs) are complex and time-variable, sometimes peaking within the observing band and showing a fractional emission bandwidth of about 10-30%. These spectral features may provide insight into the emission mechanism of repeating fast radio bursts, or they could possibly be explained by extrinsic propagation effects in the local environment. Broadband observations can better quantify this behavior and help to distinguish between intrinsic and extrinsic effects. We present results from a simultaneous 2.25 and 8.36 GHz observation of the repeating FRB 121102 using the 70 m Deep Space Network (DSN) radio telescope, DSS-43. During the 5.7 hr continuous observing session, we detected 6 bursts from FRB 121102, which were visible in the 2.25 GHz frequency band. However, none of these bursts were detected in the 8.36 GHz band, despite the larger bandwidth and greater sensitivity in the higher-frequency band. This effect is not explainable by Galactic scintillation and, along with previous multi-band experiments, clearly demonstrates that apparent burst activity depends strongly on the radio frequency band that is being observed.Comment: 8 pages, 3 figures, 1 table. Accepted for publication in ApJL on 2020 June 8. v2: Updated to match published versio

    Pulse Morphology of the Galactic Center Magnetar PSR J1745–2900

    Get PDF
    We present results from observations of the Galactic Center magnetar, PSR J1745–2900, at 2.3 and 8.4 GHz with the NASA Deep Space Network 70 m antenna, DSS-43. We study the magnetar's radio profile shape, flux density, radio spectrum, and single pulse behavior over a ~1 year period between MJDs 57233 and 57621. In particular, the magnetar exhibits a significantly negative average spectral index of ⟨α⟩ = -1.86 ± 0.02 when the 8.4 GHz profile is single-peaked, which flattens considerably when the profile is double-peaked. We have carried out an analysis of single pulses at 8.4 GHz on MJD 57479 and find that giant pulses and pulses with multiple emission components are emitted during a significant number of rotations. The resulting single pulse flux density distribution is incompatible with a log-normal distribution. The typical pulse width of the components is ~1.8 ms, and the prevailing delay time between successive components is ~7.7 ms. Many of the single pulse emission components show significant frequency structure over bandwidths of ~100 MHz, which we believe is the first observation of such behavior from a radio magnetar. We report a characteristic single pulse broadening timescale of ⟨τ_d⟩ = 6.9 ± 0.2 at 8.4 GHz. We find that the pulse broadening is highly variable between emission components and cannot be explained by a thin scattering screen at distances ≳1 kpc. We discuss possible intrinsic and extrinsic mechanisms for the magnetar's emission and compare our results to other magnetars, high magnetic field pulsars, and fast radio bursts

    Post-outburst Radio Observations of the High Magnetic Field Pulsar PSR J1119-6127

    Get PDF
    We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S-band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X-band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected at S-band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior

    Bright X-ray and Radio Pulses from a Recently Reactivated Magnetar

    Get PDF
    Magnetars are young, rotating neutron stars that possess larger magnetic fields (B ≈ 10¹³-10¹⁵G) and longer rotational periods (P ≈ 1-12 s) than ordinary pulsars. In contrast to rotation-powered pulsars, magnetar emission is thought to be fueled by the evolution and decay of their powerful magnetic fields. They display highly variable radio and X-ray emission, but the processes responsible for this behavior remain a mystery. We report the discovery of bright, persistent individual X-ray pulses from XTE J1810-197, a transient radio magnetar, using the Neutron star Interior Composition Explorer (NICER) following its recent radio reactivation. Similar behavior has only been previously observed from a magnetar during short time periods following a giant flare. However, the X-ray pulses presented here were detected outside of a flaring state. They are less energetic and display temporal structure that differs from the impulsive X-ray events previously observed from the magnetar class, such as giant flares and short X-ray bursts. Our high frequency radio observations of the magnetar, carried out simultaneously with the X-ray observations, demonstrate that the relative alignment between the X-ray and radio pulses varies on rotational timescales. No correlation was found between the amplitudes or temporal structure of the X-ray and radio pulses. The magnetar's 8.3 GHz radio pulses displayed frequency structure, which was not observed in the pulses detected simultaneously at 31.9 GHz. Many of the radio pulses were also not detected simultaneously at both frequencies, which indicates that the underlying emission mechanism producing these pulses is not broadband. We find that the radio pulses from XTE J1810-197 share similar characteristics to radio bursts detected from fast radio burst (FRB) sources, some of which are now thought to be produced by active magnetars

    Bright X-ray and Radio Pulses from a Recently Reactivated Magnetar

    Get PDF
    Magnetars are young, rotating neutron stars that possess larger magnetic fields (B ≈ 10¹³-10¹⁵G) and longer rotational periods (P ≈ 1-12 s) than ordinary pulsars. In contrast to rotation-powered pulsars, magnetar emission is thought to be fueled by the evolution and decay of their powerful magnetic fields. They display highly variable radio and X-ray emission, but the processes responsible for this behavior remain a mystery. We report the discovery of bright, persistent individual X-ray pulses from XTE J1810-197, a transient radio magnetar, using the Neutron star Interior Composition Explorer (NICER) following its recent radio reactivation. Similar behavior has only been previously observed from a magnetar during short time periods following a giant flare. However, the X-ray pulses presented here were detected outside of a flaring state. They are less energetic and display temporal structure that differs from the impulsive X-ray events previously observed from the magnetar class, such as giant flares and short X-ray bursts. Our high frequency radio observations of the magnetar, carried out simultaneously with the X-ray observations, demonstrate that the relative alignment between the X-ray and radio pulses varies on rotational timescales. No correlation was found between the amplitudes or temporal structure of the X-ray and radio pulses. The magnetar's 8.3 GHz radio pulses displayed frequency structure, which was not observed in the pulses detected simultaneously at 31.9 GHz. Many of the radio pulses were also not detected simultaneously at both frequencies, which indicates that the underlying emission mechanism producing these pulses is not broadband. We find that the radio pulses from XTE J1810-197 share similar characteristics to radio bursts detected from fast radio burst (FRB) sources, some of which are now thought to be produced by active magnetars

    Robust processor allocation for independent tasks when dollar cost for processors is a constraint

    Get PDF
    Includes bibliographical references (pages 9-10).In a distributed heterogeneous computing system, the resources have different capabilities and tasks have different requirements. Different classes of machines used in such systems typically vary in dollar cost based on their computing efficiencies. Makespan (defined as the completion time for an entire set of tasks) is often the performance feature that is optimized. Resource allocation is often done based on estimates of the computation time of each task on each class of machines. Hence, it is important that makespan be robust against errors in computation time estimates. The dollar cost to purchase the machines for use can be a constraint such that only a subset of the machines available can be purchased. The goal of this study is to: (1) select a subset of all the machines available so that the cost constraint for the machines is satisfied, and (2) find a static mapping of tasks so that the robustness of the desired system feature, makespan, is maximized against the errors in task execution time estimates. Six heuristic techniques to this problem are presented and evaluated
    corecore